기업조회

본문 바로가기 주메뉴 바로가기

논문

논문 기본정보

태양열(太陽熱) 집열기개발(集熱器開發)에 관(關)한 연구(硏究) - 포물반사곡면(抛物反射曲面)으로된 2차원(二次元) 집광식(集光式) 태양열(太陽熱) 집열기(集熱器)의 성능분석(性能分析) -

논문 개요

기관명, 저널명, ISSN, ISBN 으로 구성된 논문 개요 표입니다.
기관명 NDSL
저널명 한국농업기계학회지 = Journal of the Korean Society for Agricultural Machinery
ISSN 1010-4542,
ISBN

논문저자 및 소속기관 정보

저자, 소속기관, 출판인, 간행물 번호, 발행연도, 초록, 원문UR, 첨부파일 순으로 구성된 논문저자 및 소속기관 정보표입니다
저자(한글) 송현갑,연광석,조성찬,충북대학교 농과대학 농업기계학과,충북대학교 농과대학 농업기계학과,충북대학교 농과대학 농업기계학과
저자(영문)
소속기관
소속기관(영문)
출판인
간행물 번호
발행연도 1985-01-01
초록 It is desirable to collect the solar thermal energy at relatively high temperature in order to minimize the size of thermal storage system and to enlarge the scope of solar thermal energy utilization. So far the concentrating solar collector has been developed to collect solar thermal energy at relatively high temperature, but it has some difficulties in maintaining the volumetric body of solar collector for long term utilization. On the other hand, the flat-plate solar collector has been developed to collect the solar thermal energy at low temperature, and it has advantages in maintaining the system for long term utilization, since it's thickness is thin and not volumetric. In this study, to develop a solar collector that has both advantages of collecting solar thermal energy at high temperature and fixing conveniently the collector system for long term period, a cylindrical parabolic concentrating solar collector was designed, which has two rows of parabolic reflectors and thin thickness such as the flat-plate solar collector, maintaining the optical form of concentrating solar collector. The characteristics of the concentrating parabolic solar collector newly designed was analysed and the results are summarized as follows; 1. The temperature of the air enclosed in solar collector was all the same as $50^{ circ}C$ in both cases of the open and closed loop, and when the heat transfer fluid was not circulated in tubular absorber, the maximum surface temperature of the absorber was $118-120^{ circ}C$, this results suggested that the heat transfer fluid could be heated up to $118^{ circ}C$. 2. In case of longitudinal installation of the solar collector, the temperature difference of heat transfer fluid between inlet and outlet was $4^{ circ}-6^{ circ}C$ at the flow rate of $110-130{ ell}/hr$, and the collected solar energy per unit area of collector was $300-465W/m^2$. 3. The collected solar energy per unit area for 7 hours was 1960 Kcal/$m^2$ for the open loop and 220 Kcal/$m^2$ for the closed loop. Therefore it is necessary to combine the open and closed loop of solar collectors to improve the thermal efficiency of solar collector. 4. The thermal efficiency of the solar collector (C.P.C.S.C.) was proportional to the density of solar radiation, indicating the maximum thermal efficiency ${ eta}_{max}=58%$ with longitudinal installation and ${ eta}_{max}=45%$ with lateral installation. 5. The thermal efficiency of the solar collector (C.P.C.S.C.) was increased in accordance with the increase of flow rate of heat transfer fluid, presenting the flow rate of $110{ ell}/hr$ was the value of turning point of the increasing rate of the collector efficiency, therefore the flow rate of $110{ ell}/hr$ was considered as optimum value for the test of the solar collector (C.P.C.S.C.) performance when the heat transfer fluid is a liquid. 6. In both cases of longitudinal and lateral installation of the solar collector (C.P.C.S.C.), the thermal efficiency was decreased linearly with an increase in the value of the term ($T_m-T_a$)/Ic and the increasing rate of the thermal efficiency was not effected by the installation method of solar collector.
원문URL http://click.ndsl.kr/servlet/OpenAPIDetailView?keyValue=03553784&target=NART&cn=JAKO198517648534017
첨부파일

추가정보

과학기술표준분류, ICT 기술분류,DDC 분류,주제어 (키워드) 순으로 구성된 추가정보표입니다
과학기술표준분류
ICT 기술분류
DDC 분류
주제어 (키워드)